Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2322924121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607933

RESUMO

Many Mendelian disorders, such as Huntington's disease (HD) and spinocerebellar ataxias, arise from expansions of CAG trinucleotide repeats. Despite the clear genetic causes, additional genetic factors may influence the rate of those monogenic disorders. Notably, genome-wide association studies discovered somewhat expected modifiers, particularly mismatch repair genes involved in the CAG repeat instability, impacting age at onset of HD. Strikingly, FAN1, previously unrelated to repeat instability, produced the strongest HD modification signals. Diverse FAN1 haplotypes independently modify HD, with rare genetic variants diminishing DNA binding or nuclease activity of the FAN1 protein, hastening HD onset. However, the mechanism behind the frequent and the most significant onset-delaying FAN1 haplotype lacking missense variations has remained elusive. Here, we illustrated that a microRNA acting on 3'-UTR (untranslated region) SNP rs3512, rather than transcriptional regulation, is responsible for the significant FAN1 expression quantitative trait loci signal and allelic imbalance in FAN1 messenger ribonucleic acid (mRNA), accounting for the most significant and frequent onset-delaying modifier haplotype in HD. Specifically, miR-124-3p selectively targets the reference allele at rs3512, diminishing the stability of FAN1 mRNA harboring that allele and consequently reducing its levels. Subsequent validation analyses, including the use of antagomir and 3'-UTR reporter vectors with swapped alleles, confirmed the specificity of miR-124-3p at rs3512. Together, these findings indicate that the alternative allele at rs3512 renders the FAN1 mRNA less susceptible to miR-124-3p-mediated posttranscriptional regulation, resulting in increased FAN1 levels and a subsequent delay in HD onset by mitigating CAG repeat instability.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Regiões 3' não Traduzidas/genética , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Estudo de Associação Genômica Ampla , Doença de Huntington/genética , MicroRNAs/genética , Enzimas Multifuncionais
2.
Brain Commun ; 6(2): fcae016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38449714

RESUMO

Expansions of glutamine-coding CAG trinucleotide repeats cause a number of neurodegenerative diseases, including Huntington's disease and several of spinocerebellar ataxias. In general, age-at-onset of the polyglutamine diseases is inversely correlated with the size of the respective inherited expanded CAG repeat. Expanded CAG repeats are also somatically unstable in certain tissues, and age-at-onset of Huntington's disease corrected for individual HTT CAG repeat length (i.e. residual age-at-onset), is modified by repeat instability-related DNA maintenance/repair genes as demonstrated by recent genome-wide association studies. Modification of one polyglutamine disease (e.g. Huntington's disease) by the repeat length of another (e.g. ATXN3, CAG expansions in which cause spinocerebellar ataxia 3) has also been hypothesized. Consequently, we determined whether age-at-onset in Huntington's disease is modified by the CAG repeats of other polyglutamine disease genes. We found that the CAG measured repeat sizes of other polyglutamine disease genes that were polymorphic in Huntington's disease participants but did not influence Huntington's disease age-at-onset. Additional analysis focusing specifically on ATXN3 in a larger sample set (n = 1388) confirmed the lack of association between Huntington's disease residual age-at-onset and ATXN3 CAG repeat length. Additionally, neither our Huntington's disease onset modifier genome-wide association studies single nucleotide polymorphism data nor imputed short tandem repeat data supported the involvement of other polyglutamine disease genes in modifying Huntington's disease. By contrast, our genome-wide association studies based on imputed short tandem repeats revealed significant modification signals for other genomic regions. Together, our short tandem repeat genome-wide association studies show that modification of Huntington's disease is associated with short tandem repeats that do not involve other polyglutamine disease-causing genes, refining the landscape of Huntington's disease modification and highlighting the importance of rigorous data analysis, especially in genetic studies testing candidate modifiers.

4.
Anal Chem ; 95(41): 15254-15263, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782556

RESUMO

The formation of soluble α-synuclein (α-syn) and amyloid-ß (Aß) aggregates is associated with the development of Parkinson's disease (PD). Current methods mainly focus on the measurement of the aggregate concentration and are unable to determine their heterogeneous size and shape, which potentially also change during the development of PD due to increased protein aggregation. In this work, we introduce aptamer-assisted single-molecule pull-down (APSiMPull) combined with super-resolution fluorescence imaging of α-syn and Aß aggregates in human serum from early PD patients and age-matched controls. Our diffraction-limited imaging results indicate that the proportion of α-syn aggregates (α-syn/(α-syn+Aß)) can be used to distinguish PD and control groups with an area under the curve (AUC) of 0.85. Further, super resolution fluorescence imaging reveals that PD serums have a higher portion of larger and rounder α-syn aggregates than controls. Little difference was observed for Aß aggregates. Combining these two metrics, we constructed a new biomarker and achieved an AUC of 0.90. The combination of the aggregate number and morphology provides a new approach to early PD diagnosis.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/metabolismo
5.
Inorg Chem ; 62(39): 15936-15942, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37728539

RESUMO

In this work, a number of new infrared nonlinear optical (NLO) crystals of LixAg1-xInSe2, in which the ratio x of Li/Ag varies in a wide range from 0 to 1, are investigated. Structural analysis reveals that the space group of LixAg1-xInSe2 evolved from I4̅2d in AgInSe2 to Pna21 in LiInSe2 as x increases from low values (0, 0.2, 0.37) to large values (0.55, 0.78, 0.81, 1). Compared to other Li/Ag coexisting chalcogenides such as LixAg1-xGaS2 and LixAg1-xGaSe2, the structural distortions in LixAg1-xInSe2 are much more prominent. This may explain the limited crystallization region in the phase graph of the tetragonal structure LixAg1-xInSe2. The fundamental optical absorption edges in these LixAg1-xInSe2 compounds are determined from the direct electronic transitions and the band gaps Eg gradually increase as the lithium content increases, consistent with the first-principles calculations. The composition x = 0.78 is calculated to have a good set of optical properties with a large NLO coefficient (dpowder = 28.8 pm/V) and moderate birefringence (Δn ∼ 0.04). Accordingly, the Li0.78Ag0.22InSe2 crystal is grown by the modified Bridgman-Stockbarger method, and it exhibits a wide transparency range from 0.546 to 14.3 µm at the 2% transmittance level.

6.
J Am Chem Soc ; 145(28): 15137-15151, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37409504

RESUMO

The fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe3(PO4)2·8H2O (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved in situ and ex situ approaches. We show that vivianite crystallization occurs in distinct stages via a transient amorphous precursor phase. The metastable amorphous ferrous phosphate (AFEP) intermediate could be isolated and stabilized. We resolved the differences in bonding environments, structure, and symmetric changes of the Fe site during the transformation of AFEP to crystalline vivianite through synchrotron X-ray absorption spectroscopy at the Fe K-edge. This intermediate AFEP phase has a lower water content and less distorted local symmetry, compared to the crystalline end product vivianite. Our combined results indicate that a nonclassical, hydration-induced nucleation and transformation driven by the incorporation and rearrangement of water molecules and ions (Fe2+ and PO43-) within the AFEP is the dominating mechanism of vivianite formation at moderately high to low vivianite supersaturations (saturation index ≤ 10.19). We offer fundamental insights into the aqueous, amorphous-to-crystalline transformations in the Fe2+-PO4 system and highlight the different attributes of the AFEP, compared to its crystalline counterpart.

7.
NPJ Genom Med ; 7(1): 53, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064847

RESUMO

Huntington's disease is caused by an expanded CAG tract in HTT. The length of the CAG tract accounts for over half the variance in age at onset of disease, and is influenced by other genetic factors, mostly implicating the DNA maintenance machinery. We examined a single nucleotide variant, rs79727797, on chromosome 5 in the TCERG1 gene, previously reported to be associated with Huntington's disease and a quasi-tandem repeat (QTR) hexamer in exon 4 of TCERG1 with a central pure repeat. We developed a method for calling perfect and imperfect repeats from exome-sequencing data, and tested association between the QTR in TCERG1 and residual age at motor onset (after correcting for the effects of CAG length in the HTT gene) in 610 individuals with Huntington's disease via regression analysis. We found a significant association between age at onset and the sum of the repeat lengths from both alleles of the QTR (p = 2.1 × 10-9), with each added repeat hexamer reducing age at onset by one year (95% confidence interval [0.7, 1.4]). This association explained that previously observed with rs79727797. The association with age at onset in the genome-wide association study is due to a QTR hexamer in TCERG1, translated to a glutamine/alanine tract in the protein. We could not distinguish whether this was due to cis-effects of the hexamer repeat on gene expression or of the encoded glutamine/alanine tract in the protein. These results motivate further study of the mechanisms by which TCERG1 modifies onset of HD.

8.
Nat Neurosci ; 25(4): 446-457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379994

RESUMO

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity. Variants in FAN1 clustered in its DNA-binding and nuclease domains and were associated predominantly with earlier-onset HD. Nuclease activities of purified variants in vitro correlated with residual age at motor onset of HD. Mutating endogenous FAN1 to a nuclease-inactive form in an induced pluripotent stem cell model of HD led to rates of CAG expansion similar to those observed with complete FAN1 knockout. Together, these data implicate FAN1 nuclease activity in slowing somatic repeat expansion and hence onset of HD.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Idade de Início , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Exoma/genética , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Sequenciamento do Exoma
9.
Am J Hum Genet ; 109(5): 885-899, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325614

RESUMO

Genome-wide association studies (GWASs) of Huntington disease (HD) have identified six DNA maintenance gene loci (among others) as modifiers and implicated a two step-mechanism of pathogenesis: somatic instability of the causative HTT CAG repeat with subsequent triggering of neuronal damage. The largest studies have been limited to HD individuals with a rater-estimated age at motor onset. To capitalize on the wealth of phenotypic data in several large HD natural history studies, we have performed algorithmic prediction by using common motor and cognitive measures to predict age at other disease landmarks as additional phenotypes for GWASs. Combined with imputation with the Trans-Omics for Precision Medicine reference panel, predictions using integrated measures provided objective landmark phenotypes with greater power to detect most modifier loci. Importantly, substantial differences in the relative modifier signal across loci, highlighted by comparing common modifiers at MSH3 and FAN1, revealed that individual modifier effects can act preferentially in the motor or cognitive domains. Individual components of the DNA maintenance modifier mechanisms may therefore act differentially on the neuronal circuits underlying the corresponding clinical measures. In addition, we identified additional modifier effects at the PMS1 and PMS2 loci and implicated a potential second locus on chromosome 7. These findings indicate that broadened discovery and characterization of HD genetic modifiers based on additional quantitative or qualitative phenotypes offers not only the promise of in-human validated therapeutic targets but also a route to dissecting the mechanisms and cell types involved in both the somatic instability and toxicity components of HD pathogenesis.


Assuntos
Doença de Huntington , Cognição , DNA , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Expansão das Repetições de Trinucleotídeos
10.
Phys Rev Lett ; 128(7): 077403, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244414

RESUMO

We report the first direct measurements of the refractive index of silica glass up to 145 GPa that allowed quantifying its density, bulk modulus, Lorenz-Lorentz polarizability, and band gap. These properties show two major anomalies at ∼10 and ∼40 GPa. The anomaly at ∼10 GPa signals the onset of the increase in Si coordination, and the anomaly at ∼40 GPa corresponds to a nearly complete vanishing of fourfold Si. More generally, we show that the compressibility and density of noncrystalline solids can be accurately measured in simple optical experiments up to at least 110 GPa.

11.
J Chem Phys ; 155(18): 184503, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773959

RESUMO

We have performed a combined experimental and theoretical study of ethane and methane at high pressures of up to 120 GPa at 300 K using x-ray diffraction and Raman spectroscopies and the USPEX ab initio evolutionary structural search algorithm, respectively. For ethane, we have determined the crystallization point, for room temperature, at 2.7 GPa and also the low pressure crystal structure (phase A). This crystal structure is orientationally disordered (plastic phase) and deviates from the known crystal structures for ethane at low temperatures. Moreover, a pressure induced phase transition has been identified, for the first time, at 13.6 GPa to a monoclinic phase B, the structure of which is solved based on good agreement with the experimental results and theoretical predictions. For methane, our x-ray diffraction measurements are in agreement with the previously reported high-pressure structures and equation of state (EOS). We have determined the EOSs of ethane and methane, which provides a solid basis for the discussion of their relative stability at high pressures.

12.
J Huntingtons Dis ; 10(3): 367-375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34180418

RESUMO

BACKGROUND: Huntington's disease (HD) is caused by an expanded (>35) CAG trinucleotide repeat in huntingtin (HTT). Age-at-onset of motor symptoms is inversely correlated with the size of the inherited CAG repeat, which expands further in brain regions due to somatic repeat instability. Our recent genetic investigation focusing on autosomal SNPs revealed that age-at-onset is also influenced by genetic variation at many loci, the majority of which encode genes involved in DNA maintenance/repair processes and repeat instability. OBJECTIVE: We performed a complementary association analysis to determine whether variants in the X chromosome modify HD. METHODS: We imputed SNPs on chromosome X for ∼9,000 HD subjects of European ancestry and performed an X chromosome-wide association study (XWAS) to test for association with age-at-onset corrected for inherited CAG repeat length. RESULTS: In a mixed effects model XWAS analysis of all subjects (males and females), assuming random X-inactivation in females, no genome-wide significant onset modification signal was found. However, suggestive significant association signals were detected at Xq12 (top SNP, rs59098970; p-value, 1.4E-6), near moesin (MSN), in a region devoid of DNA maintenance genes. Additional suggestive signals not involving DNA repair genes were observed in male- and female-only analyses at other locations. CONCLUSION: Although not genome-wide significant, potentially due to small effect size compared to the power of the current study, our data leave open the possibility of modification of HD by a non-DNA repair process. Our XWAS results are publicly available at the updated GEM EURO 9K website hosted at https://www.hdinhd.org/ for browsing, pathway analysis, and data download.


Assuntos
Doença de Huntington , Idade de Início , Feminino , Genes Modificadores , Estudo de Associação Genômica Ampla , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Masculino , Cromossomo X
13.
Nat Commun ; 11(1): 3332, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620830

RESUMO

Earth's core is composed of iron (Fe) alloyed with light elements, e.g., silicon (Si). Its thermal conductivity critically affects Earth's thermal structure, evolution, and dynamics, as it controls the magnitude of thermal and compositional sources required to sustain a geodynamo over Earth's history. Here we directly measured thermal conductivities of solid Fe and Fe-Si alloys up to 144 GPa and 3300 K. 15 at% Si alloyed in Fe substantially reduces its conductivity by about 2 folds at 132 GPa and 3000 K. An outer core with 15 at% Si would have a conductivity of about 20 W m-1 K-1, lower than pure Fe at similar pressure-temperature conditions. This suggests a lower minimum heat flow, around 3 TW, across the core-mantle boundary than previously expected, and thus less thermal energy needed to operate the geodynamo. Our results provide key constraints on inner core age that could be older than two billion-years.

14.
Rev Sci Instrum ; 91(5): 053103, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32486715

RESUMO

Optical studies of materials at high pressure-temperature (P-T) conditions provide insights into their physical properties that may be inaccessible to direct determination at extreme conditions. Incandescent light sources, however, are insufficiently bright to optically probe samples with radiative temperatures above ∼1000 K. Here we report on a system to perform optical absorption experiments in a laser-heated diamond anvil cell at T up to at least 4000 K. This setup is based on a pulsed supercontinuum (broadband) light probe and a gated CCD detector. Precise and tight synchronization of the detector gates (3 ns) to the bright probe pulses (1 ns) diminishes the recorded thermal background and preserves an excellent probe signal at high temperature. We demonstrate the efficiency of this spectroscopic setup by measuring the optical absorbance of solid and molten (Mg,Fe)SiO3, an important constituent of planetary mantles, at P ∼30 GPa and T ∼1200 K to 4150 K. Optical absorbance of the hot solid (Mg,Fe)SiO3 is moderately sensitive to temperature but increases abruptly upon melting and acquires a strong temperature dependence. Our results enable quantitative estimates of the opacity of planetary mantles with implications to their thermal and electrical conductivities, all of which have never been constrained at representative P-T conditions, and call for an optical detection of melting in silicate-bearing systems to resolve the extant ambiguity in their high-pressure melting curves.

15.
Adv Sci (Weinh) ; 7(2): 1901668, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993284

RESUMO

The insulator-to-metal transition in dense fluid hydrogen is an essential phenomenon in the study of gas giant planetary interiors and the physical and chemical behavior of highly compressed condensed matter. Using direct fast laser spectroscopy techniques to probe hydrogen and deuterium precompressed in a diamond anvil cell and laser heated on microsecond timescales, an onset of metal-like reflectance is observed in the visible spectral range at P >150 GPa and T ≥ 3000 K. The reflectance increases rapidly with decreasing photon energy indicating free-electron metallic behavior with a plasma edge in the visible spectral range at high temperatures. The reflectance spectra also suggest much longer electronic collision time (≥1 fs) than previously inferred, implying that metallic hydrogen at the conditions studied is not in the regime of saturated conductivity (Mott-Ioffe-Regel limit). The results confirm the existence of a semiconducting intermediate fluid hydrogen state en route to metallization.

16.
J Phys Chem B ; 123(45): 9654-9667, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31638809

RESUMO

As a candidate of Martian salts, calcium perchlorate [Ca(ClO4)2] has the potential to stabilize liquid water on the Martian surface because of its hygroscopicity and low freezing temperature when forming aqueous solution. These two properties of electrolytes in general have been suggested to result from the specific cation-anion-water interaction (ion pairing) that interrupts the structure of solvent water. To investigate how this concentration-dependent and temperature-dependent ion pairing process in aqueous Ca(ClO4)2 solution leads to its high hygroscopic property and the extreme low eutectic temperature, we have conducted two sets of experiments. First, the effects of concentration on aqueous calcium perchlorate from 3 to 7.86 m on ion pairing were investigated using Raman spectroscopy. Deconvolution of the Raman symmetric stretching band (ν1) of ClO4- showed the enhanced formation of solvent-shared ion pairs upon increasing salt concentration at room temperature. We have confirmed that the low tendency of forming contact ion pairs in concentrated solution contributes to the high hygroscopicity of the salt. Second, the near eutectic samples were studied as a function of temperature by both combined differential scanning calorimetry-Raman spectroscopic experiments and in situ X-ray diffraction. The number of solvent-shared ion pairs was found to increase with decreasing temperature when cooled below the temperature of maximum density of the solution, driven by a change in water toward an ice-like structure in the supercooled regime. The massive presence of solvent-shared ion pairs in turn limits the development of the long-range order in the tetrahedral networks of water molecules, which is responsible for the extremely low eutectic point and deep supercooling effects observed in the Ca(ClO4)2-H2O system.

17.
Environ Sci Pollut Res Int ; 26(19): 19063-19077, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31102218

RESUMO

Phosphorus (P) is a significant limiting nutrient which is essential for all forms of lives. However, phosphate rock reserves are depleting rapidly due to population growth. At the same time, several countries have imposed legislative regulations on P-release into surface waters due to eutrophication. Nutrient recovery from wastewater can facilitate a sustainable, cost-effective and environment-friendly source of phosphorus. Although P-recovery as struvite from wastewater has been widely studied for a long time, there still exists a lot of challenges for widespread full-scale implementation. This paper presents a comprehensive analysis of the current state of the technologies for phosphorus recovery in the form of struvite. Fluidized bed reactors (FBRs) are widely used compared to continuously stirred reactors for P-recovery as struvite because of different solid and liquid retention time. Commercially available technologies were reported to accomplish about 80% P-removal efficiencies with a reasonable P-recovery for the most of the cases. The struvite production rate of various technologies varies from 0.89 to 13.7 kg/kg influent P. Nevertheless, these technologies are associated with several shortcomings such as high operational costs, high energy consumption, and large footprint. Increasing efforts focusing on the development of sustainable and commercially feasible technologies are expected in this sector as P-recovery is considered to be the future of wastewater engineering.


Assuntos
Fósforo/química , Estruvita/química , Águas Residuárias/química , Purificação da Água/métodos , Eutrofização , Compostos de Magnésio
18.
Environ Technol ; 40(15): 2000-2010, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29388510

RESUMO

Over the past few decades, several technologies have been developed to recover phosphorus (P) as struvite from wastewater. Although these technologies have achieved reasonable P-removal efficiencies, these technologies are associated with several shortcomings such as high capital and operating costs, longer crystallization time and production of low-quality product. This study focussed on the development of an efficient technology by designing a new fluidized bed reactor (FBR) and determining its optimum operating conditions. The supersaturation ratio is the most important process parameter for struvite recovery. This study exerted effort to establish a range of supersaturation ratios in order to achieve optimum P-removal and recovery with a lesser amount of fine crystals produced. Bench-scale FBR used in this study was able to accomplish 90% P-removal with 18% P-recovery. P-removal efficiency was observed to be increasing with an increase in the initial supersaturation ratio up to a value of 6.5. On the other hand, an increase in the supersaturation ratio resulted in a lower P-recovery efficiency with an increase in fines production. The supersaturation ratio from 5.5 to 6.0 was found to be optimum for efficient operation of the reactor.


Assuntos
Compostos de Magnésio , Fósforo , Anaerobiose , Cristalização , Fosfatos , Estruvita , Eliminação de Resíduos Líquidos
19.
Sci Adv ; 4(10): eaat9776, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30333994

RESUMO

Hydrogen-rich hydrides attract great attention due to recent theoretical (1) and then experimental discovery of record high-temperature superconductivity in H3S [T c = 203 K at 155 GPa (2)]. Here we search for stable uranium hydrides at pressures up to 500 GPa using ab initio evolutionary crystal structure prediction. Chemistry of the U-H system turned out to be extremely rich, with 14 new compounds, including hydrogen-rich UH5, UH6, U2H13, UH7, UH8, U2H17, and UH9. Their crystal structures are based on either common face-centered cubic or hexagonal close-packed uranium sublattice and unusual H8 cubic clusters. Our high-pressure experiments at 1 to 103 GPa confirm the predicted UH7, UH8, and three different phases of UH5, raising confidence about predictions of the other phases. Many of the newly predicted phases are expected to be high-temperature superconductors. The highest-T c superconductor is UH7, predicted to be thermodynamically stable at pressures above 22 GPa (with T c = 44 to 54 K), and this phase remains dynamically stable upon decompression to zero pressure (where it has T c = 57 to 66 K).

20.
Nat Commun ; 9(1): 2624, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980680

RESUMO

Diatomic nitrogen is an archetypal molecular system known for its exceptional stability and complex behavior at high pressures and temperatures, including rich solid polymorphism, formation of energetic states, and an insulator-to-metal transformation coupled to a change in chemical bonding. However, the thermobaric conditions of the fluid molecular-polymer phase boundary and associated metallization have not been experimentally established. Here, by applying dynamic laser heating of compressed nitrogen and using fast optical spectroscopy to study electronic properties, we observe a transformation from insulating (molecular) to conducting dense fluid nitrogen at temperatures that decrease with pressure and establish that metallization, and presumably fluid polymerization, occurs above 125 GPa at 2500 K. Our observations create a better understanding of the interplay between molecular dissociation, melting, and metallization revealing features that are common in simple molecular systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...